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ABSTRACT  

Given a commutative ring R and its quotient ring R/N, where N is often a nilpotent 

ideal of R, a formula is given for computing the idempotent elements of R. This formula 

is used to characterise idempotent elements in particular commutative rings. In order to 

better illustrate the key findings, several instances have been provided. 
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1. INTRODUCTION 

An idempotent element, also known as an idempotent of a ring, is an element of the 

ring a such that a2 = a, in the context of ring theory, a subfield of abstract algebra. [1] 

The element exhibits idempotence under the multiplication of the ring. For any positive 

integer n, it follows inductively that a = a2 = a3 = a4 = ... = an  .To give just one example, 

a matrix ring's idempotent element is a matrix that is idempotent in itself[3].  

Decompositions of modules and the ring's homological features are linked for rings in 

general, when members are idempotent under multiplication. Boolean algebra is all 

about rings where adding and multiplying have no effect on the parts that make up the 

ring[2]. 

Rukhsan Ul Haq (2017) The spectral decomposition of the wavefunction and the 

hermitian operators(observables) in terms of the spectral projections makes projection 

operators crucial to the algebraic formulation of quantum theory. Hermitian operators, 

including projection operators, are idempotent. They are referred to as "quantum 

idempotents" by our group. Projection operators are significant for our mental grasp of 

quantum theory as they also reflect the observation process on a quantum system. This 

paper delves into the algebra of quantum idempotents and demonstrates that it gives 

rise to a number of other interesting algebras, including the Lie algebra, the Grassmann 

algebra, and the Clifford algebra, all of which are known as geometric algebras because 

they were originally developed for the geometry of spaces. This novel understanding 
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of these geometric algebras as the underlying algebras of quantum processes and as a 

bridge between geometry and quantum theory is made possible by the projection 

operator representation. It is important to remember that projection operators span both 

projective geometry and quantum logic lattices. The algebras of framed braid groups, 

parafermions, and quarks (su(3)) will all be represented in an iterative fashion. As 

iterant algebra encodes both the spatial and temporal characteristics of recursive 

processes, these representations are stunning. This novel way of looking at fermions, 

spins, and parafermions is made possible by our representation of these algebras in 

physics (anyons) .[5] 

2. IDEMPOTENT RINGS AND THEIR VARIETIES 

The following is a partial list of significant classes of idempotents:[4] 

If (ab) = (ba) = 0, then (a) and (b) are orthogonal idempotents. Since a and b are 

orthogonal, if an is idempotent in the unitary ring R, then so is b = 1 a. 

When axe = xa for all x in R, we say that an is central to R and that an is idempotent in 

R. 

The elements zero and one are always idempotent, hence they qualify as "trivial 

idempotents." 

A non-zero idempotent such that aR is not a direct sum of two non-zero submodules is 

said to be a primitive idempotent of ring R. To put it another way, if the expression a = 

e + f cannot be written in the form a = e + f, where e and f are nonzero orthogonal 

idempotents in R, then an is a primitive idempotent. 

To put it another way, an idempotent such that aRa is a local ring is called a local 

idempotent. This means that local idempotents are also primitive, as it follows that aR 

is directly indecomposable. 

In mathematics, an idempotent a for which aR is a simple module is said to be 

irreducible on the right. Right (and left) irreducible idempotents are local since 

EndR(aR) = aRa is a division ring and, by Schur's lemma, a local ring. 

We say that an idempotent a is centrally primitive if it can't be written as the product of 

two non-zero orthogonal idempotents. 

If there exists an idempotent b in R such that b + I = a + I, then the ring R/I has an 

idempotent a + I, and the ring R/I lifts modulo I. 

If RaR = R, then the idempotent of R is said to be full. 

See also separable algebra and separability idempotent. 
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Because ab = 0 when neither a nor b is zero and b = 1 a, any non-trivial idempotent an 

is a zero divisor. This demonstrates that idempotents of this type do not exist in integral 

domains or division rings. These idempotents are also absent in local rings, but for an 

alternative reason. When it comes to rings, the only idempotent that can be found in 

their Jacobson radical is zero[1]. 

Contribution to the breakdown 

R idempotents are closely related to R-module decomposition. Given an R-module M 

and its EndR(M) ring, we get A ⊕ B = M  if and only if E contains a unique idempotent 

e such that A = e(M) and B = (1 − e)(M). If and only if 0 and 1 are the only idempotents 

in E, then M is clearly indecomposable[9].  

Whenever M = R, the endomorphism ring EndR(R) = R, with each endomorphism 

arising as the left multiplication of a fixed element of the ring. For the new notation, if 

and only if there is a unique idempotent e such thateR = A and (1 − e)R = B., then 

A ⊕ B  = R as right modules. The idempotent generates each direct summand of R. 

aRa = Ra is a ring with multiplicative identity if and only if there is a central idempotent. 

Idempotents determine the direct decompositions of R as a sum of rings, just as 

idempotents determine the direct decompositions of R as a module.[7] The identity 

elements of the rings Ri are central idempotents in R, pairwise orthogonal, and their 

sum is 1. If R is the direct sum of the ringsR1,...,Rn, then R is a ring with n members. R 

is the direct sum of the rings Ra1,..,Ran if and only if the centre idempotents a1,..,an in 

R are pairwise orthogonal and have a sum of 1. For example, if R has an idempotent 

central point, then R can be written as the direct sum of the corner rings 

aRa and (1 − a)R(1 − a). So, if the identity 1 is centrally primitive, and only if it is 

centrally primitive, then the ring R can't be broken down into smaller rings. 

An inductive procedure can be used to try to reduce 1 to a collection of its most 

fundamental building blocks. It's over if we find that one is centrally primitive. If not, 

then it is the sum of central orthogonal idempotents, each of which is either primitive 

or the sum of central idempotents. [11]There's a chance that this process will go on 

forever, leading to an endless family of central orthogonal idempotents. One form of 

finiteness criterion for a ring is that it does not have infinite sets of central orthogonal 

idempotents. There are a number of ways to accomplish this, including requiring a 

Noetherian ring. If there exists a decomposition R = c1R ⊕ c2R ⊕ ... ⊕ cnR  where ci 

is a centrally primitive idempotent, then R is the direct sum of the corner rings ci Rci, 

each of which is a ring irreducible.[8] 

3. BASIC FACTS 

This  findings are based on the following, which appears to be on building idempotent 

elements on a ring using elements from a quotient ring. The major steps in recalling 
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this result for a commutative ring are provided. [14]There is more information in the 

cited source for the curious reader. Remember that element e is idempotent in ring R if 

and only if e 2 = e, and that elements e1 and e2 are orthogonal in ring R if and only if e1 

e2 = 0.If an idempotent e over R can't be written as the sum of two non-trivial orthogonal 

idempotent elements, it is said to be primitive. 

Proposition 

Consider the ring R, the nil ideal N of R, and the idempotent element of R/N, f = f + N. 

Therefore, R contains an idempotent element e such that e̅ = f̅, where " ̅  " indicates the 

canonical homomorphism from R to R/N. In addition, if R is commutative, then e is a 

special element.[12] 

Proof 

Since f is idempotent, we get f 2 - f N, and since N is a nil ideal, we have (f 2 − f) n = 0 

for all positive integers n. If g = 1 − f, 0 = (fg) n = f n g n .  

The equation  

1 = 1 2n−1 = (f + g) 2n−1 = h + e, 

can be derived from the relationship f + g = 1. 

Where 

h = ∑ (
2n − 1

i
)

n−1

i=o

f ig2n−1−i,  

e = ∑ (
2n − 1

i
)

n−1

i=o

f ig2n−1−i 

When f n g n = 0 and e + h = 1, we get eh = he = 0 To deduce that e f mod N, we need 

only observe that f 2n1 e mod N and that f 2n−1 ≡ e mod N and that f ≡ f 2 ≡ · · · ≡ f 2n−1. 

It can be shown that e + z is unique if and only if z is nilpotent, so we will use this 

version of the idempotent element to demonstrate this. (1 − 2e)z = z 2is the result of 

setting(e + z) 2 = e + z . [13] 

As a result, z 3 = (1 − 2e)z 2 = (1 − 2e) 2 z through induction 

(1 − 2e) n z = z n+1.. 

This means that z = 0 and e + z = e, since (1 − 2e) 2 = 1 − 4e + 4e = 1 
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4. RAISED FORMULAS FOR IDEMPOTENT CALCULATION 

Proposition 

Let's say that R is a commutative ring and that N is a nilpotent ideal of index t ≥ 2 in R. 

Given that f is an idempotent element in R/N and e is the lifted idempotent element in 

R corresponding to f, we have[15] 

There is a prime integer p such that p t, and for any n in the range [0, N], there is a real 

number r in the range [0, R] such that 

(e + n) p = e + pnr 

The lifted ideal e is equal to the nilpotency index t of the ideal N if and only if there 

exists a natural number s > 1 such that sN = 0, and all the prime factors of the number 

s are greater than or equal to t. 

e = f s . 

For example, e = f s holds when the nilpotency index of the ideal N equals t = 2 and s 

≥ 2, then e = f s . 

 Proof 

Since n t = 0, and e is idempotent in the ring R, we have the following.[18] 

(e + n)p =  ∑(
p

j

p

j=o

)ep−jnj 

= e + ∑(
p

j

t−1

j=1

)enj 

Since p is prime, it may be divided into equal parts by any integer j such that(
p

j
)for all 

1 ≤ j ≤ p − 1.. 

Moreover, because t ≤ p,  

(e + n)p  + e + pn (k1e + k2en + ⋯ . kt−1ent−2) 

anywhere  

ki =(
p

i
)/p. 

Therefore,  
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(e + n) p = e + pnr, 

By means of                          

r = k1e + k2en + ⋯ . kt−1ent−2  ∈ R. 

 Let the primes used to break down s into smaller numbers be{p1p2 · · · pm} . We can 

deduce from (1) that there is some r1∈ R such that p1 ≥ t and ¯f = ¯e, f = e + n for some 

n N.[16] 

f p1 = (e + n) p1 = e + p1nr1. 

Item 1 also implies that there is a real number r2∈ R such that 

f p1p2 = (f p1 ) p2 

= (e + p1nr1)
 p2 

= e + p2(p1nr1)r2. 

Carrying on with the current procedure There are three real numbers, r3, r4, · · · , rm∈ R 

such that 

f s = e + sn(r1r2 · · · rm). 

In other words,  

f s = e + sh, 

for some N where h = nr1r2 · · · rs∈ N. Because h ∈ N, and sN = 0are both equal to zero, 

we get e = f s. 

It is easy to see that all prime factors of s are bigger than or equal to t = 2 if the 

nilpotency index of the ideal N equals t = 2. 

5. MUTABLE RINGS WITH A NILPOTENT IDEAL 

Proposition 

Take the commutative ring R and its k ≥2 nilpotent ideal N as an example. Imagine that 

R/N is a quotient ring with a characteristic s > 1. [17] To the extent that f + N is an 

idempotent component of R/N, 

f sk-1 

 is a recursive member of R, the ring of repetitions. 

Furthermore, E(R)| = E(R/N)| 
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Proof: 

This proposition's proof follows logically. To prove that the collection B = {N, N2 , ..., 

Nk}  of ideals of the ring R meets the CNC-condition with the nilpotency index and 

characteristic of the ideal Ni in the ideal N i+1 being ti = 2 and si = s for all i = 1, 2, 3, . 

. . , k – 1 

Indeed, 

The chain condition is obviously met by the collection B. 

Second, (Ni ) 2 = N2i and i + 1 ≤ 2i for i = 1, 2, 3, . . . , k − 1, This means that B is a 

nilpotent collection.[19] 

For any ring R/N with a characteristic s, there is an integer nN such that 

∑ 1R

s

i=1

= n.  

Then  

sNi = ( 1R + ⋯ + 1R)Ni =  nNi∁Ni+1 

It follows  

sNi∁Ni+1for i = 1, 2, 3, . . . , k − 1. 

Also, the collection B meets the characteristic condition because all of the prime parts 

of si = s are greater than or equal to ti = 2. [18] 

6. CONCLUSIONS 

Rings having a nilpotent ideal, commutative group rings RG, where R contains a 

nilpotent ideal, commutative group rings RG, where R is a chain ring, the group ring 

ZmG, where Zm is the ring of integers modulo m, and so on all have idempotent 

members. It transfers idempotent elements from quotient rings to the ambient ring, and 

under some conditions it provides a simpler formula than the one given in the cited 

work for determining the lifted idempotent. This conclusion has various ramifications, 

including the determination of the set of idempotent elements in certain situations, such 

as when the ring R is a chain ring, contains a nilpotent ideal, or is a commutative ring 

containing a nilpotent ideal.[20] 
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